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ABSTRACT

Elastodynamic stress intensity factors generated by the interaction of

wave motions with a crack are analyzed. It is shown that in an

asymptotic approx imation , which is valid for ~igh frequencies , the s tress

intensity fac tors at the edge of a crack are related to the fields of

incident rays by a ma trix of stress in tens ity fac tor co e f f ic ien ts, which

can be computed from canonical solutions . The canonical solutions are

provided by the f ields des cribing dif f r a c t ion by a semi-infinite crack

of plane body waves and plane surface waves , which are incident under an

arbitrary angle with the edge of the crack . Several applications of the

theory are presented. For cracks of finite length , the contributions due

to the travelling back and forth of rays between the two crack tips is

taken into accoun t in a simple manner , to yield results which are in

excellent agreement with numerical results obtained by other authors.
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1. Introduc tion

A crack in a solid body gives rise to singular stresses at the edge of

the crack. In a local coordinate system , with the origin on the edge of

the crack , a represen ta tive s tress componen t near the edge , say T~~, may be

expressed in the form

T ( r ,~~) = (2~ r)~~ K
1 T0(~

) (1)

Here r and 
~ 

are polar coordinates in the plane norma l to the edge. The

geometrical features of the crack geometry , as well as the parameters

descr ibing mater ial proper t ies and loads , enter in the stress intensity

fac tor K
1
. For dynamic problems K

1 
also depends on the t ime t and the

circular frequency u.~.

There is much interest in stress intensity fac tors , because they are

relevant to fracture mechanics considerations . Here we are interested in elasto-

dynamic stress intensity factors generated by the interaction of wave motions

with a crack. We present some general results which are valid for high fre-

quencies under time-harmonic excitations , or for small times after the arriva l

of wave fronts under impact loads.

Ray theory provides a very usefu l method to analyze both the propagation

of high frequency waves and the propagation of surfaces of discontinuity ,

see e.g. Refs.rl~ - ~3J . The general ideas of ray theory were extended by

Keller 4~ to analyze the far field in diffraction problems . In the present

paper a ray theory for stress intensity factors is established. The theory

states that in an asymptotic approximation .the stress intensity factors at

a po in t on the edge of a crack ar~ related to the field of the incident wave

at this point by a matrix of stress intensity factor coefficients , wh ich

depends only on the direction of incidence , the frequency, and the local
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physical properties of the solid at the point of incidence. The incident

wave may be a body wave as well as a surface wave. The matrix is independent

of the curvature of both the wavefront of the incident wave and the edge of

the crack , provided that these curvatures are of smaller orders in magnitude

than the wavenumbers.

In Sec tion 2 , an ed ge region analysis is presented for inc iden t body

waves. Details are worked out for an inc ident ray of longitudina l motion.

By matching a boundary layer solution of the diffracted field in the vicinity

of the edge to the outer solution (the geometrical optics field), it is shown

that the stress intensity fa ctors genera ted by the incident f ield are rela ted

in a simple manner to the stress intensity factors for a p lane longitudina l

wave incident upon a semi-infinite stress-free crack. The modifications

required to treat incident rays of transverse motion are obvious , and they

are not discussed in detail.

For inc ident bod y waves the cons truction of the matrix of stress intensity

factor coefficients is discussed in Section 3. The coefficients are listed

in Append ix A. In Section 4 the theory is extended to elastodynamic s tress

intensi ty fac tors genera ted by surface waves which are incident on the edge

via the faces of the crack.

In the last section several applications of the theory are presented ,

and the results are compared with those obtained by other authors.

2. ~ 4ge Region Analysis

In this section a formal proof of the theory for incident body waves

is presented by a method motivated by the work of Buchal and Keller ~~~

An inner solution is constructed which is asymptotically valid in a reg ion

near the edge. The leading term of this solution is then matched to the

leading term of the outer solution , which is the geometrical optics part of

the diffracted fie ld.

$
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Essential to the development of this section is the “geometrical

op tics ” par t of the diffrac ted field, for the case that a p lane longitudinal

wave is diffrac ted by a semi-infinite crack , whose surfaces are free of

tractions . The geometry is shown in Fig.l. Omitting , here and in the

sequel, the factor exp (-iwt), where W is the circ u lar frequency, the

incident wave is represented by

~ inc 
= 

~ 
exp(ik

L
p.x) (2)

In Eq.(2), we have k
L 

= W/C
L~ 

where C
L 

is the velocity of longitudinal

waves : C
L [~~+2t.L)/o]

½
, and p is a unit vector which defines both the

direc tion of propagation and of displacement. In terms of the ang les shown

in Fig.l we have

(sinØ~ CO5BL, S~
t1
~L 

5LflØ
L
, cos

~ L
) (3)

The geometrical optics part of the diffracted field has been worked

• out in a paper by Achenbach and Gautesen [6]. The results may be written

in the form

• 
~go 

= exp(ik
L
p3
x
3) ~~g0

(X
1~~X

2
) (4)

where

~go (x1,x2) = 

~ inc 
H( e_ eL) + 

~L 
H(e+BL

_ ZTT) + 
~T 

H(e+8T
_2--T) (5)

where H( ) is the 1-leaviside step function. The relevant ang les are

defined by

C
L CO5ØT 

= C
T 

COS(
~L 

(6)

C
L 

Sifl
~T 

cose
T 

C
T 

sin
~L 

cose
L 

(7)

In these relations C
T 

= (~ / o ) ½ is the velocity of transverse waves.

The terms in Eq. (5) are

_ _ _ _ _ _ _ _  _ _ _  -
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~ iric 
= 

~ 
exp [ik

L
(p

l
x
l
+p
2
x
2)] (8)

L . L LR
L 

p expI1k~ (p 1xi
+p
2
x
2)] (9)

• 
~T 

= R
T 

d exp [ik
T

(p
~
x
l
+p

~
x
2)] (10)

where R
L 

and R
T 
are the usual reflection coefficients for the reflection

of a plane longitudina l wave which is inc ident on a stress-free surface

under an angle with the normal,and k
T 

= ( u / C
T

. We have

sin2~ s in2
~ 2

_ (c
L

/c
T
)
2 cos22~ 2R

L
= . . 2 2 (11)

sin2~ sLn2o
2
+(c

L
/ c
T
) cos 2

~ 2

2(c
L

/c
T
) cos2~ 2 

s in2~,

2 
(12)

s in2~ sin
~T
+(c

L
/c
T

) cos

The unit vectors appearing in Eqs.(8) - (10) are

L L L L
£ = ~p1,p2,p3~ 

= (p1,—p 2,p3) (13)

• ~T = (sinøT 
coseT, - Sln

~T 
sineT, cos

~ T
) (14)

d = 
T 

~ ~~~ 
~ / 

~~2 
~ ~~~ (15)

Now let us consider an incident longitudinal wave whose surfaces

of cons tan t phase are arb itrary bu t smooth. The wave is incident on a

stress free crack of arbitrary shape, whose edge is a smooth curve. The

geome try is shown in Fig.2. We consider a point 0 on the edge , and we

define an orthonorma]. coordinate system (x1,x2,s). Here s is arc length

along the edge , wi th positive direction such that the propagation vector

of the incident wave makes an acute ang le , 
~L

( s ) ,  with the tangent to the

edge. The positive x
1 
axis is in the crack surface, and in the direction

of the principal normal to the edge. The x
2
-axis is in the direction of

the binorinal to the edge , and such that the coordinates (x1,x2 , s) form a

right-hand coordina te system . At point 0 the incident wave may be represented by

S 
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.

~ inc 
= A (x1, x2 , s) vS exp [ikLS(xl x2 , s)] (16)

where S(x1, x2 , s) is the phase function which def ines sur fa ces of cons tan t

phase or wavefronts. The rays are norma l to the wavefronts. At point 0

the direc tion of the ray is defined by the propagation vector p(s), where

p(s) = VS(0,0,s) = (.
~
1n

~ L coseL, sinøL sineL, cosøL
) (17)

Thus eL is the angle with the x
1 

ax is of the pr oje ction of p on the

(x 1, x2)-plane. It is noted that the definition of p(s) given by Eq.(17)

is comple tely analogous to Eq.(3), with the understanding that all

quantities now are functions of the arc length s. Considering some

poin t s on the ed ge , it follows that the phas e S a t poin t s can be

expressed as

S (s) S(0 ,0,s) = S(O , O ,~~) + cos
~~ L

(sYds (18)

For small x
1 

and x 2 ,  the geometrical optics part of the diffracted

field corresponding to the incit1~ fLt field given by Eq. (16) can now

readily be constructed. We find

~g0
(x
1~
x
2~
s) = A

0
(s) exp [ik

L
S
O
(s)l ~g0

(x
1~
x
2

) + o ( l )  (19)

where W
g0 

is def i ned by Eq.(5). The o(1) term in Eq. (l9) contains

the effect of curvature of the wavefront at the edge. Also

A (s) = A(O , 0 , s) (20)

The expression given by Eq.(19) is taken as the outer solution in a

matching of two solutions .

Examination of the geometrical optics part of the disp lacemen t f ield ,

E q . ( 19 ) ,  mot ivates  the fo l lowing choice of the disp lacement in a small

regi on near the edge (the inner solution)

t

1.
S 

—
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-
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6

= exP[ik~S (s)]~v(y1,y 2 , s ) + 0(k
L
1
)] (21)

where the inner variables y. are given by

k
L
x i , i 1,2 (22)

The choice of the stretching factor k
L 

is based on the requirement that

the s-derivatives of the inner solution should be of the same order of

magnitude as the y.-derivatives.

In the coordinate system (y1,y 2 , s) ,  the metr ics are h
1 

= h
2 kj,

and h3 
= 1 + 0(k~~ ). We remark that the curvature of the edge is conta ined

in the O(k~~) term in the metric h3
. With j,k = 1,2 and implying the

summa tion conven tion ,the elas todynamic displacemen t equa tions of motion to

lead ing order in k
L 
become upon substitution of (21)

k~ [vjkk
+(c

L
/c
T
)
2 (v

k k j
+ i v

3~~ 
COS

~ L 
+ v~~) - v~ Cos~~ Ll~~~

(k
L
) = 0 (23)

• k~ [v 3, kk+(c LIc T ) 2 (i  vk k  cO5~ L
+ V

3 
sin qs~

) - v
3 

cos2c~L
]+O(k

L
) = 0 (24)

On the surfaces of the crack , the conditions of vanishiiig surface tractions

y ield

[~ 
(vk ,k + i v3 cosø L

) o~~ + ~ (v~~2 + v
2~~ ) ]  + 0(1) = 0 (25)

~ 
(v 3 2  ÷ i V

2 
CO Sø~)]  + 0(1) = 0 (26)

Equation (21) def ines  the inner solution

• The matching of the inner and outer solutions is carried out on an

overlap reg ion for which x . = k~
3’14c .  and y. k~ € ., where ~~~

. sa tisf y

the requirement  0 < (c~+4)~ < . The coefficients -3/4 is fairly

arbitrary , excc~pt that i~ absolute value should be between 0.5 and 1. The

matching condi t ion  is

~g0
(k~

3”4
€1~ 

k~
3’
~
4
~ 2 , s) - u . (k~~ 1, k~ e2 , s) ~~o(1) (27)

where 
~go and are defined by Eqs.(19) and (21), respectively.

I
‘S
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Equation (27) holds in the overlap regions , excep t on the boundary of the

shadow region, and the boundary of the region of reflected rays. We

remark tha t the d i f f r a c ted f ield , which is discussed in detail in Ref.~~6 ,

enters the matching condition in subsequent terms, but not in the terms

of the order that are considered here.

Let us now return to the diffraction of a plane wave of the form

given by Eq.(2), by a semi-infinite crack. The total disp lacement field

f or this problem depend s on x
3 

only thr ough the factor exp(ik
L
p
3
x
3
). Thus

this disp lacement field may be represented by an expression of the form

u(x1, x2 , x3) 
= exp(ik

L
p
3
x
3

) W(x 1, x2) (28)

It can now be verified that

v(y1,y 2,s) = A (s) W(y
1
/k~ ,y

2/k~) (29)

sa tis f ies  the disp lacement equations of motion (23) and (24) as well as

the boundary conditions (25) and (26) exactly to the order indicated .

Moreover , with A (s) defined by Eq.(20), it is found that the matching

condi tion (27) is satisfied to the order indicated , since for y. =

W(k
L~
’4€l, kL

3”4
~2
) asymptotically equals Wgo (k

L
3”4

€l~ 
k~

3
~
’
~~€2

) .  On the

basis of these observa tions , Eq.(21) then yields for the inner solution

,~~A (s) exp [ik
L
S (s)] W(x

1
,x
2

) + O(k~
1) (30)

This result impl ies tha t the stress intens ity factor at a point s on the

edge is equal to the f ield of the inciden t ray a t this po int , times the

stress in tens ity fac tor divided by the phase exp (ik
L
p
3
x
3
) for a plane wave

• of unit amp litude which is incident with the same propagation vector p.

• 3. Elastodynamic Stress Intensity Factors

Elastodyrtamic stress intensity factors for a straight-edged semi-

infinite crack were analyzed by Achenbach and Gautesen [7]. The d if f r a c tion

of a plane long itudina l wave of the form

$

_________ ______- - —,,-•- -• ---—- ——- • — - • — • — — - -— ~ • •~~~~~~~~ • •‘~.—— ~~~
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= p exp (Lk
L
p .x) (31)

which is incident under an arbitrary ang le with the edge of the crack ,

generates Mode 1, II  and III stress intensity factors. An incident trans-

verse wave of the form

(m) 
d
(m) 

exp (ik~ p . x )  (32)

generally also generates stress intensity factors in all three fracture

modes. In Eq. (32) the index m can assume the values m = 2 and m = 3,

wh ich r e f e r , respe ctivel y, to vertical and horizontal polarization of the

incident wave , relative to the plane spanned by i
2 

and p, see Fig.l. Thus ,

= x p (33)

(34)

For each incident field and ~
(m)

, m = 2 ,3, the three stress ilitensity

fa ctors may be represe nted b y a ve ctor K(m) For an incident longitudina l

wave the components of K~~~ are presented in Ref. [7~~. The stress intensity

fa ctors genera ted by incident transverse waves cart be computed by the

• methods of Ref.r71. For convenience , the components of

= K~
1
~ exp (~

ik
L
p
3
x
3

) (35)

K
(m) 

= K
(m) exp(_ik

T
p3
x
3
) , m = 2,3 (36)

are listed in Appendix A. Here 14m), K
(m) K

(m) are the Mode I, II and

III stress intensity factors , respec tively.

In th is paper we are interes ted in the stress intensi ty fa ctors

genera ted a t the ed ge of a curved crack , see Fig.2 by an inciden t wave

of the form =

U A(x 1, x2 , s) (m)
() exp~ ik

(m)S(x 1, x2 , s)] (37)

where m = 1 si gn if ies a long itudinal  wave , when
(1) 

~~p = vS , ~~~~ = k
L 

(38)

while m = 2 signifies a transverse wave with vertical polarization

‘4

4¼ 
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=

~!io wn i n  i • ) r € v ~o~: s si~c t ion t ha t  fo r  an inc id

• s i t o : ~~- t o ~ s t r e s s  i n t e n s i t y  f a c t o r  at  a i • •• o~ = c r : c k

s I t • I ~ Id of  the  i nc iden t  ray a :  t h i s  po i it :Iult 1.—

p1i~~J by t i e  st r e s s  i n t e ns i t y  f ac tor f i r  a co rr espond in g ~i1one w i v u

- • • (m)
i v t ~k d  hv the p hase exp (Lk  p

3
x
3
) . thus

K = h A e (m) exp( ik ~~~~s ) ( :1

. = ~~r c A ~~~~~ CXP (~ k (m) S )  is the f i e ld  of the i n c i d e n t  ray  a t  a p o i n t

‘n t~i~ edge , and ~ is a mat r ix , whose components are

= K
~

1
~ Pk + K~

2
~~d~

2
~ + Kc 3~ d~

3
~ (42)

The coefficients K~
m) 

are def ined by Eqs.(35) and (36).

Severa l spe ci f ic examples of elas todyrtamic stress intensity factors

generated by bod y waves are discussed in Section 5.

4. Surface Waves

The results of the preceding sections can easily be extended to the

compu tat ion of elas tod ynamic stress intensity fac tors wh ich are ge nera ted

at the diffraction of Ray le igh surf ace wav es by a crack edge. In this

paper we consider stress intensity factors due to surface waves which are

incid en t on an edge via both faces of a crack. Then , it is convenient

• to distinguish between symmetric and antisymmetric motions relative to

the plane of the crack . Only the case of symmetric motions is considered

in detail , but the corresponding results for antisymmetric motions can

be ob ta ined ana logousl y.

Following Eqs. (3.12) and (3.13) of Ref. ~8] with appropriate minor

adjustments in notation , the time-reduced displacements for the incident

~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ 
IT 
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surface wave may be written in the forms

= ~(l-2s~ /s~ ) e~~~ ~~ + 2 ( s~~~s~~) ~ -~ b X
2 

L~ V
2
sgn(x

2
) (~ 3)

u~ = 

~~~ 
(2s~~-s~~) e~~

° X
2 - 2(ab/4) e~~~ 

1X 2 1 (~~~~ )

wher e j  = 1,3, and

V
2 

= exp Ii
~~~

s
R

(x
l
sLn

~~
. x .3cosB.)]~ (45)

2 2 - ~ ~a = 

~~~~~~~ 
h = (46a , b)

Thus , in the geomet ry  shown in F ig . 1 , the surface wave is incident

on the edge under an angle 
~
, .  w i t h  the  edge .

The diffraction of surface waves has been discussed in some detail

in Re fs. ~~~ and ~9]. If we denote the time reduced disp lacement in the

x
2
-direction on the faces of the crack by U~~(x1,x2

) ,  the e x p o n e n t i a l

Four ie r  t rans form w i t h  respect  to x
1 

of U~ is given by Eq. (44) of

R e f .  181. Here we s l igh t l y  rewr i t e  this express ion  in the form

-+ 1 1 1 1 E(s
Rs i ne i )  

~~~~~~~~~~~U 2
(~~ = - 

~~ sRs
~~e. + iO - 

E+ sRsTL i + 10, E ( F )  e 3 (- f7 )

In Eq.(47)

= 

~R~
°
~~ I 

(48)

E(~ ) = ~~~~~~~~~~~~~~~~~~~~~~~~ (49)

where K+(~~~fl) is defined by Eq.(4.6~ of Ref. [8]. The incident and

reflected surface waves correspond to the contributions of the poles

in inversi ’n inte~ raUi . Thus , the contribution at ~ = s
R
sinO

~
_ iO just

reproduces the incident wave given by Eq .(43), while the pole at

= _ S
R

Si f l
~~j iO ~ iv e s  t h e  reflected surface wave~. It is easily veri-

fied tha t t l~t - r~ f l e c t i on  c o e f f i c i e n t  can be wr i t t en  as

_ _ _ _  
- 

•:~~~
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RR 
_ E (s

R
s
~~

ri8 j
)! E ( _ s

R
s ine j ) (50)

By v i r t u e  of a s y mp t o t i c a l l y  va l id  r e l a t i o n s  be tween  a !n i i r i e r

t rans  form as -. ~ and th e  i nverse t rans  form as x 1 
-. 0 .

fo l lowing  express ion  fo r  the Mode I stress intens i ty factor has been

derived as Eq. (66~ of Ref. 7 T :

R ~~ / 7  3/2  ‘ 2 i~’/4 — +
K = 2 Th~ (

~~
1_ s7/ sT) e u r n  I

2(~~ 
(51

By substituting Eq .(47) into Eq .(51), we obtain K~ = K
R
exp(~~iw~ x3), 

where

K R 
= -2 51Th~~~ (l-s~~/s~~) sR s in e .  E(s R

s in
~~

. )  e~~~~
’4 (5 2 )

An e x t e n s i o n  to i n c i d e n t  s u r f a c e  waves w i t h  cu r v e d  w a v e f r o n t s ,

which  are incident on curved crack edges , is now c o m p l e t e l y  ana logous

t .~ the case of b o d y  v O V C S .  Suppose the time reduced incident field is

of the f o r m

u~ = A ( x ~~, s)  exp iPS
R 

S( x 1, s )]  (53)

where the disp l a c em e n t  is posi t ive on the upper  face.  The r e s u l t  then

s imp ly s t a t e s  i h = = t  Ho s t r c ~~s i n t e n s i ty  f ac to r  a t  a po in t  on the edge

is

K = A K R 
~~~~~~~ s s (54~I o -

where

A = A ( 0 , s) , S = S ( O ,s)  ~55a ,b)

S u r f a c e  w u v ’~ of the  • pe c i  y e n  Pv E n .  ( 5 3 )  r an  he gene ra ted  b y d i r e c t

a p p l i c at i o n  of  ~~~~~~~~~~~~~~~~~ to  the faces of the crack , as wel l  as by

d i f f r a c t i o n  p r i  oses .  F h r c - p l r ~ of both cases  are i~i v e n  in t he  nex t

nection.

J
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5. Examples

• In t h i s  s e c t i o n  several  app l i ca t ions  of Eqs. (41) and (54) are pre-

sented .  We will cons ide r  examp les w i t h  curved as we l l  as with p lan e

w a v e f r o n t s , and w i t h  curved  as wel l  as wi th  s t r a igh t  crack edges.  Both

s t eady- s t a t e  t ime harmonic  and impact e x c i t a t i o n s  w i l l  he cons ide red .

An t i -P l ane  ~4ot ions

The f i r s t  example is concerned w i t h  the s t ress  i n t e n s i t y  f ac to r  at the

tip of a semi-infinite crack due to an anti-p lane line load of P force

units per unit length and time variation exp(-iwt), wh ich is appl ied

parallel to the crack as shown in Fig.3. This elastodynamie problem is

two-dimensiona l, and the time reduced anti-p lane disp lacement u
3

(x 1,~~2
)

is gover ned by

v
2
u
3 

+ k~u3 
= - (P /u )  ~(r - r~~) (56)

The solution to Eq.(56) is

u
3(r ,

r )  = 
~~ 

H
~

1
~~

(k
T~

r - r~j) (57)

For large f requencies  we may wr i te

~~P 2  1 ~ ii’ -~~u
3
(r~ r~) ~~~~~ ~~~ ~~~~~~ 

cxP ik
T

Ir_r
P~ 

- —;-1 (~~‘)

Equat ion (58) represen ts  the inc iden t  f i e l d .

For an inc iden t  p lane horizontally polarized transverse wave of unit

amplitude , the elastod ynamic stress intensity factor was presented by

Eq . (90) of R e f .  77]  as

2~k~ e~~~~
4 
sin (e

T
/2) (59~

where eT 
is the ang le of i nc idence .  For the problem at  hand we have

cose
T 

= 1(x
1
)
0 

- ~~~~~~/Ir -r~~
I . Equation (59) can then be re-

wri tten as

-I

~~k 1TT~~~~~~~~1 I~~~ T ~II1 ~~~T J 1  I 1II~I~IT I 
-
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(1 - p )  e~~~~
4 

( 0 0 )

Equation (41), together with Eqs.(58) and (60) then y ields for the li ne

load problem

K
3 

= P (~~~ ¶

1
~~~~~~(l~ pl)

½exp [ik
T~

r~~rp I] (61)

This result agrees with the near-tip field computed from the asymptotic

expansion of the exact solution of an analogous problem , see Ref. 10’,

p. 329, Eq.(8.74).

For the sec ond examp le we cons ider a crack of finite length 2~,,

subjec ted to a plane horizontally polarized transverse wave of the form

(U
3

)~~ 
= A expTi

~~
(s Tx lcoseT + sTx2 sin8T 

- t)~ (62)

The geometry is shown in Fig.4 .  To compute the Mode I II  elasto-

dynamic stress intensity factor at high values of WS
T~1, we trace an

incident ray as it undergoes diffractions at the two crack tips. The

primary diffrac tion produces diffrac ted rays on the faces of the crack ,

whos e fields for large frequency and/or dis tance are eas i ly computed , as

shown in R e f . 67 . These f ie lds  are subsequent ly d i f f r a c t e d  at  the other

crack t i p,  thus producing another  set of rays on the crack faces. This

• process cont inues , and one can v isual ize  systems of rays t rave l l ing  back

and fo r th  between the two crack t i ps. Since the f i e lds  decay as (ws T r )
~~~,

it is only necessary to consider a few secondary diffra ctions . In fac t ,

in the computat ions presented  here , onl y one secondary d i f f r a c t i o n  is

inc luded.

The primary d iffracteu field of the incident ray at 0
1
, see Fig.4,

is the diffracted field for a semi-infinite crack. This field was dis-

cussed in Ref.~~6 .  On the upper surface of the crack (i.e., at ~ = 0)

‘I

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
I1..T T~~IT~~ i~II T T1II..1 ~~~~~~~~



: .~~•i~~~~~
-- • -~~~

•-~~~~~~~~~~
--

14

the exponentia l Fourier trans form of the anti-plane displacement is

given by Eq.(89) of Rcf.T7~ as

(2k~ )½ A ~~~~~~~~~~~~~~~~~~~~~~~ 
‘sin(6

T
/2)  (63)

Analogously to the results given by Eqs. (65),(70) and (71) of Ref. ~67 ,

the far field (or high frequency) inversion at ~ = 0 can he computed

as

+ —3- + iW (s x -t)
C
3 

(x
1
) 2 D

T 
A c T 1 (64)

where the diffraction coefficient D~ is

• + ‘ i -~~ i.

\ 2PW S~f 
si

~n ( e T /2 )  e 0 < 6T < n (65)

• The primary d i f f r a c ed f i e ld  at 0
2 is obtained by taking into  account

• t ha t  the angle of incidence measured from the shadow side of the crack

is i r - 9 ,~ , as shown in Fi g.4.  For the primary d i f f r a c t i o n  we can then

wr i t e

= (-x
1
+2 p )~~ DT A e~

W S
TX l+25 T

i_ t )  
(66)

where

D 
/ 1 ~~ j  1 o < e - Z 1T (67)T 
~

2flW ST cos(e T/ 2 )  ‘ T

The correspo nding disp lacements on the lower crack faces are equa l in

magni tude but  opposi te  in sign to Eqs . (64)  and (66 ) .

For the primary incident ray the stress intensity fac tor a t x
1 

= 0

is given by E q . ( 5 9 ) ,  which is val id  in the range 0 
~ 

For

= , the waves approach the crack ti p from the side of the

crack face.  Then , not only  the incident  wave but also the r e f l e c t e d  wave

is incident on the crack tip. For this system of incident and r e f l ec t ed

waves , the disp lacements on the crack face are ac tua l ly twice as large

I
3
’ 

~~~~ . . .TTT.•TI~ ~~ 1ITT~IT1T



-

-

15

• as would correspond to the incident wave o nly .  This o b s e r v a t i o n  imp lies

• that for an incident wave which is given as a surface disp lacement on

the lower face of the crack , the elas todynamic stress intensity factor

is half the value given by Eq.(59) for =

On the basis of the foregoing observation , the stress intensity

factor at x
1 

= 0 due to the primary diffracted wave generated on the

• lower crack face (which is minus the expression given by Eq .(66)),then

follows by s e t t i n g  = in Eq.(59) and substituting the appropriate

amplitude , as

= - 
~~~ ~~~~~~~~~~ DT A e

2
~
W5
T~ (68)

Mult i ply ing this  r e su l t  by 2 , to acc ount for the d i f f r a c t e d  wave on

the upper face , which is given by Eq.(66), and adding the result to the

primary stress intensity fa ctor given by Eq.(59), we obtain at

x
1 

0

~
KIII 2

~
Ak

~~
l e ’°

~
’4Ts in(9

T
/2 )  - (2~ Y~~D e2

T~~]~ (68)

It is easily shown that the incident displacement wave given by

Eq. (62) corresponds to a stress wave of magnitude i , where T i
~
Ak
T.

Let us now consider the special case of normal incidence , when eT 
= ~/2.

Then we have

~~~~~~ e~~~~~~Tl-~~~~~~~ e
1
~
2 Y 4

~]~ (69)

which can be further simplif ied to

• \K111/ r L~~ ~~~~)~~~1 - •~~~~
-
~~

4cos (2k T~ + ~ / 4 ) f l  (70)

This stress intensity factor was computed by other methods by Mal lU’.

The resul ts  are compared in Fig.5. It is noted that  the agreement is

S j

~ 

~~~~~~~~~~ • ~~~~~~~~~~~~~~~~~ ~~~~~ 

• — -- - 
- 

~~~~~~ — • ~~~~~~~~~~
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excelle nt for k
T~ 

1.5.

In-Plane Motions

As an example of the much more complicated class of in-p lane

problems we will consider the elastodynamic stress intensity factor

generated by the diffraction of a longitudinal wave by a crack of

length 2c, .

Similar to the  a n t i - p l a n e  problem the elas tod yn amic  s t ress  i n t e n s i t y

factor is computed by tracing rays as they are diffracted by the two

crack ti ps. There are , however , some interesting and important differences

with the case of anti-plane motions. The most important difference is

related to the significance of Rayle igh surf ace waves in the pr imary and

secondary diffractions . The primary diffraction generates not only rays

o f long itudinal and transverse motion , but also surface motions near the

faces of the crack. It is a general feature of in-p lane problems that

bulk waves decay as (distance)4, while sur face waves do not decay a t

= all. Thus , on the faces of the crack , the surface motions tend to pre-

dominate the longitudina l and transverse motions due to the body waves.

This means that it is necessary to consider stress intensity factors due

to sur f a ce wave s, wh ich were discussed in Section 4. Since there is no

spa tial decay, excep t for the fact that the reflection coefficient R,~
• given by Eq.(50) is smaller than unity , it is necessary to sum the

• influence of all secondary diffractions of the surfaces waves. Here

we presen t the detai ls for the case of normal inc idence .

The Rayleigh surface wave generated by the pr imary diffraction of

• the incident ray follows from Eq .(46) of Ref.~~6~ . For the problem at

hand we have

S 
—

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~



= A exp V i w ( s
Lx2

_ t ) ]  (71)

Thus p
1 

= p
3 

0 , p
2 

= 1. The experiential Fourier trans form of the

sur face  displacement  for x
1 

-
~ 0 then follows from Eq . (46) of R e f . 6 ’

as 

-+ i4i~ 1 
(s
L
+
~
)
~ A

2 
- 

2~~i(s~ _s~~)
½ 

~ K~(~ ) 
(72)

The surface wave contribution comes from the pole at ~~ = -

We f ind

R iW(s x - Wt)u 2 = D R A e  R i  (73)

where
S

T 
S
R

/sLl  ~~½

2 2 + 
(74)

R 2(l_s
L
/s
T
) K (_s

R
)

The Mode I stress intensity factor due to the primary d i f f r a c tion

immediately fol lows from Eq. (41) by set t ing p 2 p 3 
= 0 , p1 

= 1. We

find

K~~= K ~ ~~A (75)

where K~
1
~ can be obtained either as a special case of Eq .(A.2), or

by employing E q .( 5 l )  together w i t h  E q . ( 7 2 ) .  The resu l t  is

= 2~.A(s~ / s~ _l)
~~(ws L

)½ e ’~~
’4 (76)

The secondary diffractions at point 0
1 

are produced by Rayleigh sur- L

face waves. The phases of subsequent contributions as a ray travels

back and forth between the crack tips increase with ZW S
R~ 

wi th each

diffraction , i.e., they are exp (2iws
R
f), exp(4iws

R
J
~
), etc. The

magnitudes of subsequent contributions are reduced by multiplication

by the reflection factor R.~ given by Eq.(50). Thus , for the contribu-

tions of the Ray leigh waves to the stress intensity fac tors , we have

I
S

LI
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= K
R
A , where

K
R 

= D
R 

K e 2 L
R + R

R
e

41
~~

5
R~ +4e

ô
~~~

5
R

L + . . .  (77)

R . -where K is defined by Eq.(52). Equation can be written in closed

form as

R 
D
R 

K
R 

exp (2iws)~~~
K = ° 

,•  • (78)l_R
R 

exp (~. l~tiS

The total stress intensity factor is

K
1 

= K~ + K~ ( 7 9 )

N u n c r i c a l  r e s u l t s  were worked out  for s~~/s~ = 3, which corresponds

to a material with a Poisson ’ s r e t a in  • . = 0.25.  For tha t case we have

K
~
(s

R
) = 0.91116 and K

~
(_s

R
) = 1.9009. The absolute value of K

1 
is

compared in Fig.5 with numerical results obtained by Mal ~1l . It

is noted that the agreement is very good for k
T
2 > 1.5.

• Normal Point Lo~~
1s on a Semi-Infinite Crack

As an example of the computation of elastodynamic stress intensity

fac tors  generated by s u r f a c e  waves only,  we consider the case tha t the

faces of a s e m i - i n f i n i t e  crack are subjected to equal and opposi te  time -

harmonic point  loads appl ied at x
1 

= x , x2 
= ± 0 , and x

3 
= 0 , see

Fig.6. The boundary conditions at x
2 

= 0 then are

22 
= — N ~(x 1

-x
0
)F~(x3

) exp(-iWt) (80)

• = ‘ 0 (81)
‘• 21 23

Motions generated by a normal point load on a half-space have been studied

in detail. It is well known that for ws
R
r > > 1, where r2 = (x

1
-x)

2
+x~~,

the predominant component of the surface displacement is the Ray leigh

surface wave. The normal surface disp lacement is given by Eq. (2-120) of

Ref. ~127. Taking into account that in the present paper we use a

-~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ::~~~~~ -~~~~~~ ~~~~~~~~~~~~~~~ •-~~~~~~-- • ~~~~~~~~~~~~~~~~~~~~~~~~~~ 

• 

~~~~~~~~
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nega t ive time exponent , exp(-iwt), the time-reduced displacement can be

written as

0
2 

A(r) C (s
L
r ~ /4)  (82)

where
½ ½ 2 2 2 ½W s N • s (s —s )

r — - 

~L \2~
Tr, R ‘(s

R
)

In Eq.(83), R(g) is the Rayleigh function

= ~2~
2
~~4)

2 
+ 4

2
(
2 ~2)½(

2 2
)½ (84)

and the prime denotes the der ivat ive  wi th  respect to ~~.

In the context of the discussion of Section 4, and referring to

Fig. 6, we can now define at a point x
3 

on the ed ge

s i ne .  = x / r  ; cose. = x
3
/ r ; r = (x2 + x~)½ (85)

By comparing Eqs. (53) and (82) we can now immediately iden t if y A(x1,s)

and S(x1,s). By virtue of Eq. (54) the stress intensity fac tor may

then be written

K 1 
= A(r) KR exp 7i

~
e (s

R + m / 4 ) J  (86)

This stress intensity factor was also computed in Ref. r7~ b y a d i rect

asympto t ic  eva lua t ion  of in tegrals  in an expression for  the exact

solution, It can be shown that Eq. (86) agrees wi th  Eq. (104) of  R e f .  7i~

Penny-Shaped Cracks

For the final examp le we consider a penny-shaped crack under the

influence of an axially symmetric torsional wave. In cylindrical co-

ordinates (r,c,x2
), axially symmetric torsiona l wave motions are defined

by a single displacemen t component u
e
(r ,e,x2) which is independent of the

• angular variable e. The only non-zero stress components are 
~~~ 

and 
~~~~

In the problem considered here the axis of symmetry is normal to the p lane

:z~~’~ ~~~~I~~I
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of the crack , and passes through the center of the penny-shaped crack .

The geome try is shown in Fig.7. The incident stress wave is of the  f r ~n

— ~~~~~~~ = H ( c~~t - x
2
) (b7)

Thus , this is a transient stress wave , which strikes the crack at time

t = 0. Writing the near-tip stress field in the form

K (t)1 3 (88)
9 (2~T)½ (r-a)~

the first term in an expans ion over time follows from the results of

Kennedy and Achenbach 713 , Eq. (3.11)] as

K3 ( t )  = 2T (2c
T
t/U)½ 71 + 0(t)] (89)

Now we will approach this problem with the theory presented in this

paper. The incident wave (u
8
). can be expressed as

(u
e
). = exp 7iw (x

2
/c~~ t)]~~ (90)

Treating the quantity (c
T
t r ’21r 

~
LaW 2)exp (iWx

2/ cT) as the incident wave ,

it is observed that this wave is equivalent to an incident plane han -

zon tally polarized t ime-harmonic wave , which is normally incident on the

crack , i.e., p1 = 0. It then follows by employ ing Eqs .(41) and (60) tha t

/2W~~ -i~ /4 c
TK =~~~~ e (9l~3 2

• T 2~~~ w

Now we can in t roduce  the time factor exp(-iwt) in Eq.(9l) and substitute

the result in the Fourier superposition integral. Si nce
‘
~~~~~~-3/2 -iW t dt = 4(~ t)½ e~~~

4 (92)
-~t

the evaluation of the superposition integral yields Eq.(89), and the

results obtained by the method of this paper agree with those of Ref. ‘ l3 .

This example also confirms the expected result tha t the large frequency

_ _ _ _ _ _  5- -~~
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appr oximation in the frequency domain leads to a small time approximation

in the time domain. In this context small time means small after arriva l

of the wavefront which separates the disturbed and the undisturbed regions

of the solid.
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APPENDIX A

ELA STODYN AMIC STRESS INTENSIT Y FACTORS FOR THE I N C I D E N C E

OF PLANE WAVES ON A S E M I - I N F I N I T E  CRACK

In th i s  Append ix  we have l i s t ed  the  components  o f  K~~
1
~ and

m = 2 , 3 , w h i c h  are d e f i n e d  by Eqs .  (35) and ( 3 6 ) .  For economy of pre-

s e n t a t i o n  the slownesses S
n , n = 1,2,3, are introduced as

s
1 

= 1/c
L , s2 = 1/C T and 5

3 
= 1/C

R , (A. la , b , c )

where  C
R 

IS the v e l o c i t ’ , ’ o f  Ray le igh  waves .  In the f o l l ow in g  cx-

nr &s st ns ~i1e iiidc ~: (j ) can assume the va lues  (I) (incident longitudinal

wave) and (2) (incident verticall y polarized transverse wave). The

index (3)  r e f e r s  to an incident horizontally polarized transverse wave .

The stress intensity ‘actors are :

Mode I: ~~~~ = D
1 Q 1. (A.2)

Mode I I :  ~~~~ = D2 .Q2 .  1 + s
2Q3.

e I 2 ~ ( \ . 3)

Made I I I :  K~~ = is
3
02.Q2•Q 3.C2. e (A.4)

Mode I: = 0 (A.5)

(3 22
Mode I I :  K 2 

= 
~~

- 5
~~~:~~~ 5 

e

— i -s
(3\  32

Mode I I I :  K
3 

/ 
= Q, 1 + is

3Q5
C22 e (A . 7)

In these express ions :

Q 1. = ~s . 2~ s1 
½ e ~~~~~si~~ 1.+s .p

1
/ s

1 ~~
s
3
s I ~~3.~~s .p

1 ~~
/C 1. (A. S)

= 

-us. 2Ws
2 

½ e~~~~
4

l-p~ si~~ 2
+s.p

1
/s
2 

(A.9)
C1. p3

+ip
1 ~~~~~~~~~~~~~~~

2 1s
2p3 ~~~~ 2 -2iC~2 . 2’ 2 “ 2Q3. = — -

, •~ e 3 s
2
e + 2 s

3 
l—s

1
/ s  C ,.e

•\ P 1+1P 3 1

IS

i~!==—v — -• — — — — ••--- — •------••-e---- ••—n— —
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r
7/ 4

- 
F~/4-

- ‘ —1 —½Q4 = 2s7j. ~P)\~~ P7 
2 

\p3
+1p

1 ~~ 22~~~l 
( I L )

Q5 = ~~~~~~~~~~~~~~~~~ C22 Q32 exp i~~~72 -C 32, 

- 

(A . i 2 )

2 2  2
D11 

= s9/s
1 

- 2 + 2p 2 ; D21 = 2 p 2 ( AJ 3 a , b

2~~ 
- 2 ’’  2~~-

D 17 = 2 p 2 l - p2 
2 D22 

= 
~ l 2 P 2~~\ ’ P 2 

2 (A. 14a ,b

cos k .  = s .p 3/ sk , k = 1,2,3 (i~. 15)

Ck .  = 
~~~~~~ , - s~ p 3 , k = 1,2 (;~ • 16)

where  
~j l  = 

~ 1’~l ~j2  
= 1S~~~p

3

K+ 
~~~ = exp ((~~,~~)/ ~T 

(A . 1 7 )

~~2 a r ct an F (t ,~~)i (t + ~)~~ dt (A. f~~)-•

F(t,~~) = 
•/~~ 2+t

2\ /~~~2
+t

2~~~~2 ;½ 
~~~
2
~~~~

2
~~~~

2 ½  ~~~~
-
~~ 2

-
~~ 2 - 2  

(A .lY)

- 2 2 ½q .  S . — ‘ (A. 2°)
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x 2

i1’
~~I

/ P

Fig. 1 Propagation vector p of plane wav e
incident on a crack with a straight
ed ge

/ 1  ‘

~~ vs
/
/

• /~~\

/ 
I

/

Q ‘t’Lt~~

Fig. 2 Local coordina te system for wave incident
on a crack wi th a cu rved edge
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Fig. 3 Time-harmonic anti-plane line
load and s e mi - i n f i n i t e  crack

Fig. 4 Plane horizontally polarized transverse
wave incident on a crack of length 2~
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P—wave : Ref . El i)
1.6 -

+ Eq. (79)

1.2 SH - wave : _
~~~~~~~ Ref. EU)

O.8 
+

+ X~ — 

__ _x••.,.

Fig. 5 Rat ios of elas todynamic and elastostatic
s tress intens ity fac tors vers u s 2 c rack
length/wavelength for normal incidence
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x2

Ne~~~

Fi g. 6 Point  loads ap p l i e d  on crack faces
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r

Fig. 7 Penny-shaped crack
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